83. Solution: B
Let X_1, \ldots, X_n denote the life spans of the n light bulbs purchased. Since these random variables are independent and normally distributed with mean 3 and variance 1, the random variable $S = X_1 + \ldots + X_n$ is also normally distributed with mean
\[\mu = 3n \]
and standard deviation
\[\sigma = \sqrt{n} \]
Now we want to choose the smallest value for n such that
\[0.9772 \leq \Pr[S > 40] = \Pr\left[\frac{S - 3n}{\sqrt{n}} > \frac{40 - 3n}{\sqrt{n}} \right] \]
This implies that n should satisfy the following inequality:
\[-2 \geq \frac{40 - 3n}{\sqrt{n}} \]
To find such an n, let’s solve the corresponding equation for n:
\[-2 = \frac{40 - 3n}{\sqrt{n}} \]
\[-2\sqrt{n} = 40 - 3n \]
\[3n - 2\sqrt{n} - 40 = 0 \]
\[(3\sqrt{n} + 10)(\sqrt{n} - 4) = 0 \]
\[\sqrt{n} = 4 \]
\[n = 16 \]