93. Solution: C
Define \(X \) and \(Y \) to be loss amounts covered by the policies having deductibles of 1 and 2, respectively. The shaded portion of the graph below shows the region over which the total benefit paid to the family does not exceed 5:

We can also infer from the graph that the uniform random variables \(X \) and \(Y \) have joint density function
\[
\frac{1}{10} \quad \text{for } 0 < X < 10, \ 0 < Y < 10
\]
We could integrate \(f \) over the shaded region in order to determine the desired probability. However, since \(X \) and \(Y \) are uniform random variables, it is simpler to determine the portion of the 10 x 10 square that is shaded in the graph above. That is,
\[
\text{Pr Total Benefit Paid Does not Exceed 5} = \frac{6 \times 2}{100} = 0.12
\]

94. Solution: C
Let \(f(t_1, t_2) \) denote the joint density function of \(T_1 \) and \(T_2 \). The domain of \(f \) is pictured below:

Now the area of this domain is given by
\[
A = 6^2 - \frac{1}{2} (6-4)^2 = 36 - 2 = 34
\]
Consequently, \(f(t_1, t_2) = \begin{cases} \frac{1}{34} & , \ 0 < t_1 < 6, \ 0 < t_2 < 6, \ t_1 + t_2 < 10 \\ 0 & \text{elsewhere} \end{cases} \)

and
\[
E[T_1 + T_2] = E[T_1] + E[T_2] = 2E[T_1] \quad \text{(due to symmetry)}
\]
\[
\begin{align*}
&= 2 \left\{ \int_0^4 t_1 \int_0^6 \frac{1}{34} \ dt_2 \ dt_1 + \int_4^6 t_1 \int_0^{10-t_1} \frac{1}{34} \ dt_2 \ dt_1 \right\} \\
&= 2 \left\{ \int_0^4 t_1 \left[\frac{t_2}{34} \right]_0^6 \ dt_1 + \int_4^6 t_1 \left[\frac{t_3}{34} \right]_0^{10-t_1} \ dt_1 \right\} \\
&= 2 \left\{ \int_0^4 \frac{3t_1}{17} \ dt_1 + \int_4^6 \frac{1}{34} (10t_1 - t_1^2) \ dt_1 \right\} = 2 \left\{ \frac{3t_1^2}{34} \left|_0^4 \right. + \frac{1}{34} \left(5t_1^2 - \frac{1}{3} t_1^3 \right) \left|_4^6 \right. \right\} \\
&= 2 \left\{ \frac{24}{17} + \frac{1}{34} \left[180 - 72 - 80 + \frac{64}{3} \right] \right\} = 5.7
\]