Question #269

 $X \sim Exp(\theta)$

 $\bar{X} \sim \Gamma(n, \theta/n)$

Key: A

$$\sum_{i=1}^n X_i \sim \Gamma(n,\theta)$$

 $E(\bar{X}^2) = (\theta/n)^2(n)(n+1) = (n+1)\theta^2/n.$

The second line follows because an exponential distribution is a gamma distribution with α = 1 and the sum of independent gamma random variables is gamma with the " α " parameters added. The third line follows because the gamma distribution is a scale distribution. Multiplying by 1/n retains the gamma distribution with the " θ " parameter multiplied by 1/n.