Solution to (6)

Answer: (C)

$$C(S, K, \sigma, r, T, \delta) = Se^{-\delta T} N(d_1) - Ke^{-rT} N(d_2)$$
(12.1)

with

$$d_1 = \frac{\ln(S/K) + (r - \delta + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}$$

$$d_2 = d_1 - \sigma\sqrt{T}$$
(12.2a)
$$(12.2b)$$

$$d_2 = d_1 - \sigma\sqrt{T} \tag{12.2b}$$

Because S = 20, K = 25, $\sigma = 0.24$, r = 0.05, T = 3/12 = 0.25, and $\delta = 0.03$, we have

$$d_1 = \frac{\ln(20/25) + (0.05 - 0.03 + \frac{1}{2}0.24^2)0.25}{0.24\sqrt{0.25}} = -1.75786$$

and

$$d_2 = -1.75786 - 0.24\sqrt{0.25} = -1.87786$$

Using the Cumulative Normal Distribution Calculator, we obtain N(-1.75786) = 0.03939and N(-1.87786) = 0.03020.

Hence, formula (12.1) becomes

$$C = 20e^{-(0.03)(0.25)}(0.03939) - 25e^{-(0.05)(0.25)}(0.03020) = 0.036292362$$

Cost of the block of 100 options = $100 \times 0.0363 = \$3.63$.