74. Solution: E
First note \(R = \frac{10}{T} \). Then
\[
F_R(r) = P[R \leq r] = P \left[\frac{10}{T} \leq r \right] = P \left[T \geq \frac{10}{r} \right] = 1 - F_T \left(\frac{10}{r} \right) .
\]
Differentiating with respect to \(r \)
\[
f_R(r) = F'_R(r) = \frac{d}{dr} \left(1 - F_T \left(\frac{10}{r} \right) \right) = - \frac{d}{dt} F_T(t) \left(\frac{10}{r^2} \right) .
\]
Since \(T \) is uniformly distributed on \([8, 12]\),
\[
\frac{d}{dt} F_T(t) = f_T(t) = \frac{1}{4} .
\]
Therefore
\[
f_R(r) = - \frac{1}{4} \left(\frac{10}{r^2} \right) = \frac{5}{2r^2} .
\]

75. Solution: A
Let \(X \) and \(Y \) be the monthly profits of Company I and Company II, respectively. We are given that the pdf of \(X \) is \(f \). Let us also take \(g \) to be the pdf of \(Y \) and take \(F \) and \(G \) to be the distribution functions corresponding to \(f \) and \(g \). Then \(G(y) = P[Y \leq y] = P[2X \leq y] = P[X \leq y/2] = F(y/2) \) and \(g(y) = G'(y) = \frac{d}{dy} F(y/2) = \frac{1}{2} F'(y/2) = \frac{1}{2} f(y/2) .\)

76. Solution: A
First, observe that the distribution function of \(X \) is given by
\[
F(x) = \int_0^x \frac{3}{t^2} \, dt = - \frac{1}{t} \bigg|_0^x = 1 - \frac{1}{x^3} , \quad x > 1
\]
Next, let \(X_1, X_2, \) and \(X_3 \) denote the three claims made that have this distribution. Then if \(Y \) denotes the largest of these three claims, it follows that the distribution function of \(Y \) is given by
\[
G(y) = P[Y \leq y] = P[X_1 \leq y] P[X_2 \leq y] P[X_3 \leq y]
= \left(1 - \frac{1}{y^3} \right)^3 , \quad y > 1
\]
while the density function of \(Y \) is given by
\[
g(y) = G'(y) = 3 \left(1 - \frac{1}{y^3} \right)^2 \left(3 y^{-4} \right) = \left(\frac{9}{y^4} \right) \left(1 - \frac{1}{y^3} \right)^2 , \quad y > 1
\]
Therefore,