\[
\Pr\left((X < 1) \cup (Y < 1) \right) \\
= 1 - \int_0^1 \int_0^{1/2} \frac{x + y}{27} \, dx \, dy - \int_0^1 \int_0^3 \frac{x^2 + 2xy}{54} \, dy \\
= 1 - \int_0^1 \left(9 + 6y - 1 - 2y \right) dy \\
= 1 - \frac{1}{54} \int_0^3 (8 + 4y) \, dy = 1 - \frac{1}{54} (8y + 2y^2) \bigg|_0^3 = 1 - \frac{32}{54} = \frac{11}{27} = 0.41
\]

79. Solution: E
The domain of \(s \) and \(t \) is pictured below.

Note that the shaded region is the portion of the domain of \(s \) and \(t \) over which the device fails sometime during the first half hour. Therefore,

\[
\Pr \left(S \leq \frac{1}{2} \right) = \int_0^{1/2} \int_0^1 f(s,t) \, ds \, dt + \int_0^{1/2} \int_0^{1/2} f(s,t) \, ds \, dt
\]

(where the first integral covers A and the second integral covers B).

80. Solution: C
By the central limit theorem, the total contributions are approximately normally distributed with mean \(n\mu = (2025)(3125) = 6,328,125 \) and standard deviation \(\sigma \sqrt{n} = 250\sqrt{2025} = 11,250 \). From the tables, the 90th percentile for a standard normal random variable is 1.282. Letting \(p \) be the 90th percentile for total contributions, \(\frac{p - n\mu}{\sigma \sqrt{n}} = 1.282 \), and so \(p = n\mu + 1.282 \sigma \sqrt{n} = 6,328,125 + (1.282)(11,250) = 6,342,548 \).